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Streaminglike diffusion in the low-dimensional stochastic pump model

G. Corso and A. J. Lichtenberg
Department of Electrical Engineering and Computer Science, and the Electronics Research Laboratory,

University of California at Berkeley, Berkeley, California 94720
~Received 16 November 1998!

In this paper we analyze a diffusion phenomenon in a few-dimensional Hamiltonian system of coupled
mappings in which the principal component of diffusion occurs along resonances. The result is that the
diffusion can have power-law dependence in coupling parameterm and be independent of the stochastic
parameterK. For the same range of parameters, the usual analytical Arnold diffusion across resonances is
dependent onK and can be much smaller than resonance streaming diffusion. The results are used to qualita-
tively explain recent results in multidimensional coupled standard maps.@S1063-651X~99!09706-8#

PACS number~s!: 05.45.2a, 05.60.2k
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I. INTRODUCTION

The problem of the dependence between the perturba
parameter of the diffusion in multidimensional Hamiltonia
systems is far from being fully understood. The results
Chirikov, calculating the diffusion in two-and-a-half degre
of freedom@1#, and applied to two coupled mappings@2,3#,
have made reasonably accurate predictions of the diffu
rate. The method called the three-resonance model@1#, or
stochastic pump model for mappings@2#, treats the lowest
dimensional system that exhibits Arnold diffusion@1,2#. The
three-resonance model predictsD5(DI )2/t}eA/e1/2

, wheree
is the perturbation parameter andA'1.

If many resonance layers overlap, then the thr
resonance model is not adequate to describe the diffus
which can be much larger than that calculated using a th
resonance model. An upper bound on the diffusion rate
been obtained by Nekhoroshev@4# of the form D}e2A/eg

(A'1), where for the number of degrees of freedomL, the
optimal value ofg has been shown to beg.L21 @5,6#. If L
is large, it is clear that an exponentially small diffusion cou
only hold for very smalle, otherwise the exponential facto
would be essentially unity. It has been estimated that, for
exponential form to hold,e,eL;(so

2/L)2L2
, where so is

the rate of decrease of Fourier coefficients of an anal
perturbation@6#. For L large, this limitse to very small val-
ues. Also, an upper bound is related to the fastest local
fusion, while an average global diffusion is controlled
portions of the phase space where the diffusion is slowe

In a model problem in which many resonances overl
for L53, Chirikov et al. @7# numerically investigated the
scaling of the diffusion withe, finding that it agreed with the
upper bound scaling fore small, while it followed the three-
resonance model,g5 1

2 , for largere. However, the importan
L dependence was not investigated.

Konishi and Kaneko@8# studied global diffusion in a se
of coupled mappings, both for which nearest neighbors
coupled and for which there is all-to-all global couplin
with a perturbation parameterK. They investigated the dif-
fusion for 0.2<K<1, over a range ofN, the number of
coupled maps. For nearest-neighbor coupling andN.3 the
diffusion coefficientD fitted an exponential with the powe
PRE 591063-651X/99/59~6!/6652~6!/$15.00
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of e5K given by g.0.45 and independent ofN. This is
close tog50.5 predicted from a three-resonance model. F
global coupling an exponential form did not fit well; forN
54, 5, and 6 they found thatD}Kg with g.5. Using a
general analysis similar to that employed to obtain an up
bound to the diffusion, but applied to larger values ofe,
Chirikov and Vecheslavov@9# have found that the rate o
diffusion for L sufficiently large ande not too small behaves
as a power law ine, D}eh, and is independent ofL. The
value ofh can be adjusted by a fitting parameter, which w
compared to@8# to obtain a value ofh56.5.

The forms of the mapping studied by Konishi and Kane
@8# do not distinguish how many resonances are driving
diffusion, and do not distinguish the strength of coupli
from the nonlinearity. We adopted an alternate procedure
linking standard maps together through a weak-coupl
term @3,10#. We investigated various forms, for example,

I n11
1 5I n

11K1 sinun
11m sin~un

11¯1un
m!,

un11
1 5un

11I n11
1 ,

] ~1!

I n11
N 5I n

N1KN sinun
N1m sin~un

N1¯1un
m21!,

un11
N 5un

N1I n11
N ,

whereK is the nonlinearity parameter,m the coupling param-
eter, with m21 explicit couplings,m<N. For m50 we
haveN uncoupled standard maps. The structure of the in
vidual maps is nearly unchanged by making the coupl
strengthm small, and the number of interacting resonance
controlled through the number of coupling phases. The n
linearity parametersKi , 1< i<N, can also be varied inde
pendently of the coupling. The mapping equations~1! are
6652 ©1999 The American Physical Society
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PRE 59 6653STREAMINGLIKE DIFFUSION IN THE LOW- . . .
volume preserving and are also reversible, and may or m
not have a complete symplectic form, depending on the s
cific mapping form chosen.

In previous work@3,10# the mappings were numericall
integrated, for a large set of initial conditions, chosen to be
the stochastic phase space of the coupled system, for va
values ofK, m, m, andN. The actionI was allowed to range
over all values, to determine the action diffusionDI rms. The
values ofK andm were chosen to be sufficiently large th
the diffusion rate could be determined in a reasonable t
~typically 221– 224 iterations per mapping for each initia
condition!, while m was chosen sufficiently small so as not
greatly perturb the phase space of the individual maps.
standard map has the useful property of being 2p periodic in
both angle and action, so that diffusion can be followed o
DI rms@2p.

The local rate of Arnold diffusion can be calculated, usi
a generalization of the three-resonance model obtaining g
agreement with numerical diffusion over a limited range
m and K @3#. A formula for global diffusion was obtained
using a generalization of phase-space arguments that
been developed to treat a simpler problem@11#. Reasonable
agreement between theory and experiment was obtaine
initial studies withK50.8. In a subsequent study theK de-
pendence was explored over the range ofK between 0.3 and
0.8 and over a large range ofm values. The expectedm
dependence and power-law numerical results gaveK depen-
dence for the diffusionD}m2Kb, where 1.5,b,2.5. Since
the studies in@8# varied a single parametere, combining
coupling and nonlinearity, this would correspond in our ca
to D}e4 (b52), somewhat below the value ofD}e5 ob-
tained there. Furthermore, our theoretical averaging pro
dure to obtain the global diffusion produces a dominant s
ing of D}m2K, such thatD}e3. The theory, however, mad
a very strong assumption on the phase averaging, w
should be significantly in error for smallm.

In order to explore the reasons for these discrepanc
and to see if there are additional mechanisms leading to
diffusive process, we have explored a simpler system
mappings in which the mappings with stochastic drivi
phases are decoupled from the driven action and phases.
separation allows much simpler averaging than in our pre
ous work, but at the cost of less symmetry. In Sec. II
introduce the new system and numerically determine the
fusion. In Sec. III we analyze in more detail the new ma
Then, in Sec. IV we calculate the diffusion arising from t
dominant mechanism. Finally, in Sec. V the conclusions
given.

II. NUMERICAL RESULTS WITH SIMPLIFIED
MAPPINGS

We start with a Hamiltonian system~coupled symplectic
mappings! perturbed from their action-angle coordinates. D
viding the angles into driving and driven ones, the former
in their stochastic layers, only coupled in one directi
through their angles, one to one, with the driven maps, wh
are in rotational or librational orbits. The driving angle
~primed! act like time, although governed by the complicat
behavior in a bound separatrix layer. The general mapp
system is shown in Eqs.~2!,
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e-

n
us

e

e

r

od
f

ad

in

e

e-
l-

ch

s,
he
f

his
i-
e
f-
.

e

-
e

h

g

Ī 15I 11m sin~u11¯1uN1u18!,

ū15u11 Ī 1,

]

Ī N5I N1m sin~u11¯1uN1uN8 !,

ūN5uN1 Ī N,
~2!

Ī 185I 181K sin~u18!,

ū185u181 Ī 18 ,

]

Ī N8 5I N8 1K sin~uN8 !,

ūN8 5uN8 1 Ī N8 .

As in Eqs. ~1!, the couplingsm are independent of the
primary nonlinear parameterK that drives the diffusion. Al-
though the driven maps can also be in their stochastic lay
the fraction of time~phase space! is very small compared to
the fraction of time~phase space! when the driven maps ar
in rotational or librational orbits. We therefore neglect diff
sion arising from the stochastic layer of the driven ma
compared to the continuous driving from the stochas
maps.

The mappings~2! diffuse according to the Arnold mecha
nism, and the local diffusion coefficient depends expon
tially with K,

DA516m2Qo
2 exp~pQo!

sinh2~pQo!
, ~3!

whereQo is the ratio between the frequency of the driv
and driving angles@1,3,11#. The single driving angle has
frequencyK1/2, while the driven frequency is the sum of th
frequencies of the other angles, mod2p. As described in pre-
vious work, if there is only a single driven angle~say u1!
being driven byu18 , then the local diffusion across anyDI 1 ,
with DI 1 /I 1!1, depends on the local frequency ofu1 ,
which in rotation is justI 1 . ThusQo(I 1)5I 1 /K1/2; sinceI 1
spans the space 02p, the diffusion is very slow forI 1 near
p andK small. Therefore, we expect the global diffusion
be limited by the slowest diffusion whenI 1 is nearp. How-
ever, if we have additional angles in the phase term, then
value of localQo5(I 11I 21¯1I N)mod 2p/K1/2. With a
sufficient number of angles we might expect that for eachI 1
the otherI’s can take on values to makeQo5O(1) and thus
have rapid diffusion everywhere, with only an addition
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6654 PRE 59G. CORSO AND A. J. LICHTENBERG
phase-space ratio giving the probabilityP(QO;1). This
was done in@10#, leading to a dominant term

D'
2

p E
0

pS 4
I

K1/2

exp@~p/2!~ I /K1/2!#

sinh~pI /K1/2! D 2

dI, ~4!

where the integral can be taken to extend over the en
phase space. At smallI we expanded sinh(pI/K1/2) for small
argument, to obtain an approximate scalingD}K.

As described above, the numerical results gave po
laws somewhat larger. In fact, for a small number of pha
the averaging assumption leading to Eq.~4! should not be
fulfilled, and therefore slower diffusion with a higher pow
of K would be expected. AsK becomes small we would
expect that large values ofm are required to satisfy the av
eraging condition.

In Fig. 1 we plotD versusK from Eqs. ~2! for 0.1<K
<0.8 andm50.1 with various values ofm5N. All results
are normalized by the number of initial conditions, and t
number of mappings,

D5
1

n
DI rms

2 5(
i 51

M

@ I i~n!2I i~n!#2/NMn, ~5!

where M is the number of initial conditions, usually wit
M5512, gives good statistics. We have also checked t
after an initial transient, we have normal diffusion, wi
DI rms

2 }n. We see a surprising pattern, with the largeN re-
sults roughly following the theoretical predictions of Eq.~4!,
numerically calculated~solid line!, while the lower values of
N have weakerK dependence. As described above, we wo
expect strongerK dependence for small values ofN, as the
phase averaging fails to be complete.

The results indicate that another process is at work,
covered by the previous analysis@3,10#. We have, in fact,
encountered such a process, calledresonance streaming, in
which an external stochastic parameter drives two acti
along their principal resonance@11,12#. As we shall see be
low, this process which we have neglected in the previ

FIG. 1. Comparison of the numerically determinedD, from Eqs.
~5!, as a function ofK for various values ofN, to the value calcu-
lated from the dominant term in the averaging, from Eq.~4!;
m50.1.
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Arnold diffusion calculations becomes dominant at smallK.
This additional diffusion mechanism probability also a
counts for the fact that most of the numerical results
small K lie above the dominant largeK diffusion solution.
The resonance streaming manifests itself most clearly an
most easily calculated for two driven actions on a sin
resonance.

III. TWO-DRIVEN-MAP SYSTEM
WITH ASSOCIATED MAPS

We consider here the simplest set of maps that actua
the stochastic pump model for diffusion in Hamiltonian sy
tems. We have the following maps for two driven angl
u1,u2 and two driving onesu18 ,u28 :

Ī 15I 11m sin~u11u21u18!,

ū15u11 Ī 1,

Ī 25I 21m sin~u11u21u28!,

ū25u21 Ī 2,
~6!

Ī 185I 181K sinu18 ,

ū185u181 Ī 18 ,

Ī 285I 281K sinu28 ,

ū285u281 Ī 28 .

To analyze the streaming diffusion we introduce rela
maps generated from the sum and the difference driven e
tions of Eqs.~6!. The sum equations give

Ī 5I 12m sinS c1
u181u28

2 D cosS u182u28

2 D ,

~7!
c̄5c1 Ī ,

whereI[I 11I 2 andc[u11u2 are the new simplectic co
ordinates. The map~7! in the limit of K→0 (u18 ,u28→0)
becomes the standard map with stochastic parameter 2m.

Figure 2 shows the distribution normalized to 1 of pro
abilities S of u18 and (u182u28) for K50.04. The hyperbolic
point is at 0~2p is equivalent to 0! and the elliptic point atp.
As expected, the probability of a particle being close to
hyperbolic point at the vicinity of 0 or 2p is much greater
than atp. If both driving angles are in the vicinity of 0 o
2p, (u182u28)/2 is approximately 0 or 2p. If one of the driv-
ing angles is near 0 and the other near 2p, then (u182u28)/2
and (u181u28)/2 are near top. So in the map~7! when both
driving angles are in the same vicinity, the value of the c
sine function equals approximately 1 and the primed phas
the sine is approximately 0. When the driving angles are
at the same vicinity, the value of cosine equals appro
mately 21 and sinc→2sinc. In both cases the map~7!
behaves like a standard map for most times, i.e., as lon
the driving angles stay at the vicinity of 0 or 2p. Figure 2
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resembles the plot of the distribution of probabilities for
single angleu18 in the separatrix. The difference between t
distribution ofu18 and (u182u28) is that the distribution close
to the elliptic pointp is greater in caseu18 . The reason is that
if u18 and u28 are in the most probable region, close to t
hyperbolic point, (u182u28) is also around this point, but if a
least one of the angles is not there, (u182u28) is also not close
to the hyperbolic point. We note that the diffusion outside
the resonance will be slow in the sum variable.

To obtain the fast diffusion, we introduce the map crea
by subtracting the driven equations~6!:

J̄5J12m cosS c1
u181u28

2 D sinS u182u28

2 D ,

~8!

c̄5c1 Ī ,

whereJ[I 12I 2. Note that map~8! is not two degrees of
freedom; it is coupled to the dynamic evolution ofc from
map~7!. There is a notable difference in the effect ofc in the
sine function of map~7! and in the cosine of map~8!. Sup-
pose initially the primed phase of map~7! is near 0 and thec
phase gives librational orbits which oscillate aroundp. For
p2a,c,p1a, we have2h,sinc,h, whereh5sina
and a positive. With the same phases in map~8!, 21
,cosc,A12h2. In contrast, for the prime phase of Eq
~7! nearp, 2b,c,b, also2s,sinc,s in map ~8!, but
A12s2,cosc,1, wheres5sinb and b positive. We see
that there is an abrupt change in cosine function in map~8!
when the primed phase switches from 0 top. This is respon-
sible for diffusion, as shall be discussed in the next secti
Note that (u181u28)/2 is essentially always equal to 0 orp,
except during the relatively short switching time. Th
streaming is realized in map~8! during the time the term
sin@(u182u28)/2# is different from zero. Most of the time
sin@(u182u28)/2#50 because theu8 angles are in the vicinity
of the hyperbolic point. But during a timet the sine term will
be close to61 and during that time the term cos@(u18
2u28)/2# in Eqs.~7! is close to 0 such thatI 5I 11I 2.0. Then
the variable c does not oscillate greatly andJ5I 12I 2

FIG. 2. Distribution of probabilityS, normalized to 1, ofu18 and
u182u28 vs angle;K50.04.
f

d

n.

streams during this timet since the cosine term in map~8! is
relatively constant. The streaming ofJ is therefore propor-
tional to 2m and a random phase factor.

In Fig. 3 the separatrix anglesu18 ,u28 and the function
sin@(u182u28)/2# are plotted versus time forK50.02. The
peaks in the figure correspond to the small time that sin@(u18
2u28)/2# is different from zero. The near periodic motion o
Fig. 3, which is associated with the average period of
separatrix trajectoryTav, as given in@3#, is

Tav.
2p2

K
. ~9!

Each peak of sin@(u182u28)/2# in Fig. 3 corresponds to the
transit of the separatrix trajectory from a vicinity of the h
perbolic point from 0 to 2p, or vice versa. The double peak
results from the summing effect between two close trans
For K50.02, in Fig. 3,Tav.1000 corresponding to two os
cillations of a separatrix trajectory. Considering that on a
erage there are four peaks for eachTav, since there are two
anglesu8 and one peak for each transit, the average ti
between peaksr is given by

r5
Tav

P
, ~10!

whereP takes values between 4 and 8, depending on whe
the switching of the two angles coincides or not. These
be seen in the figure; we will useP56 as an average value

IV. DIFFUSION IN THE SYSTEM OF TWO COUPLED
DRIVEN MAPS

To understand the diffusive streaming process, we hav
look at the peaks sin@(u182u28)/2# of Fig. 3. In Fig. 4~a! we
plot the variableJ of map ~8! versus time forK50.01 and
m50.2. Figure 4~b! shows, for the same set of paramete
and time, the slowly varying sin@(u182u28)/2#, the function
cos@c1(u182u28)/2#, which has a rapidly varying and a slowl
varying parts, and the product of these two functions. T
fast frequency characteristic isAm in the cosine function,

FIG. 3. Graphic of two separatrix anglesu18 ,u28 , in radians, and
sin@(u182u28)/2# vs time forK50.02.
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and the slow frequency characteristic isAK in the sine. As
we have commented in the preceding section, the p
causes a change in the cosine phase and values, for ins
from (u82u9)/25p and A12s2,cosc,1 to (u82u9)/2
50 and21,cosc,A12h2. The increaseDJ in map ~8!,
and consequently the diffusion, is proportional to the a
over the product function cos@c1(u181u28)/2#sin@(u182u28)/2#.
One can see from the figure that this area is related to
difference (h2s). These quantities are difficult to estima
analytically, but can be determined numerically.

The local diffusion coefficient related to the streaming
estimated analogously to the case of diffusion caused by
celerator modes@11#. The variables used areD l , the mean
streaming path,t, the duration the streaming, andr, the time
between the peaks, with phase randomization near the hy
bolic points. For Eqs.~8! the main diffusion path isD l
5t2m, the product of the duration of the streaming timet
times theJ map step 2m. The diffusion coefficient

D local5
~D l !2

r
5

~t2m!2

r
, ~11!

which is labeled local because it takes place only in that p
of phase space where the system is in resonance.

To construct a global diffusion coefficientD we use a
phase-space argument as in previous work@2,3,10#:

FIG. 4. In ~a! the variableJ is plotted vs time from Eqs.~8!, in
~b! functions sin@(u182u28)/2#, cos@c1(u182u28)/2#, and the product of
these two functions are plotted;K50.01 andm50.2.
ak
nce

a

e

c-

er-

rt

D5D local

Ares

~2p!2 , ~12!

where (2p)2 is the total area of the phase space andAres is
the resonance area, which can be determined approxima
from the pendulum formula to beAres.3pA2m.

The time of a peak, from the vicinity of 0 to 2p, or vice
versa, is 2p/AK, the orbital period of the pendulum@11#.
We estimate the streaming timet, the center of the peak, b
t.1/AK. Using this result and Eq.~12! we obtain the fol-
lowing K independent diffusion:

D.
S 2m

AK
D 2

2p2

6K

3A2m

4p
50.29m2.5. ~13!

To numerically estimate the diffusion, we suppose th
the streaming is caused basically by the effect of a seque
of single peaks of sin@(u182u28)/2#. We evaluate an averag
(D l )2 in Eq. ~11! from a single peak using map~8!, where
u2850 and u18 is the separatrix trajectory@11#. Averaging
D l 5DJ over I 0 and c0 , for some values ofK, and using
P54 corresponding to a single peak in Eq.~10!, we write

D5
~D l !2

P

Ares

~2p!2 5
3A2m

2p3 K~D l !2, ~14!

whose results we plot with a dashed line in Fig. 5. The so
line plots the coefficient of diffusion obtained from resu
like those in Fig. 6, form50.1, where the typical time of 10
million iterations was used. We find reasonable agreem
with the predictedK-independent diffusion, and also obta
the magnitude of the diffusion.

In Fig. 6 we plot the dispersion in action, (DI )2[(I final
2I initial)

2, versus time withm50.1 for K50.4 and 0.08 for
the map~6!. The dispersion was computed from the avera

FIG. 5. Solid line is the numerically determined coefficient
diffusion D vs the parameter of stochastisityK, from Eq. ~5!; the
dashed line gives the streaminglike diffusion calculated, from
~14!; m50.1.
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of 512 particles. The plot shows two distinct transient tim
before the system attains a diffusive regime. The first is ch
acterized by an initial small constant (DI )2 caused by the
initial conditions very close to the hyperbolic point; this
estimated in Eq.~9!. The second transient time presents
slope of (DI )2 versus time that is greater than the diffusiv
characterizing streaming behavior. This time also increa
with decreasingK. These transient times can be observed
the figure.

In Fig. 7 we numerically plot on a log-log scaleD versus
m for K50.8, 0.3, and 0.1. We find an average slope ofD
}m2.14 which is in reasonable agreement with the value
D}m2.5 found in Eq.~13!.

V. CONCLUSIONS AND FINAL REMARKS

We have show that when the stochastic drive of coup
standard mappings is small, then a higher-order diffus
along resonances may be the dominant mechanism for gl
diffusion. The mechanism, which had previously been st
ied in problems in which the drive is an external rando
variable @1,11#, was applied here to the case in which t
drive is the highly correlated motion within a thin stochas
layer. The physical mechanism was demonstrated in a sim
system in which two mappings of mostly regular orbits we
coupled together through their phases and also coupled to
phase of a weakly stochastic map which itself is locked in
own stochastic layer. The basic dynamics was exhibited

FIG. 6. Log-log plot of the dispersion (DI 2) vs time, from Eqs.
~7!, for m50.1 andK50.4 and 0.08.
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transforming the driven maps to sum and difference m
pings whose orbits were explored over short times. The
sults agreed with physical expectations of the diffus
streaming mechanism.

An analytic theory of the diffusion was developed, a
the diffusion rate calculated. It was found that the diffusi
had the proportionalityD}m2.5, where m is the coupling
constant, and was independent ofK, the stochastic drive pa
rameter, forK small. These proportionalities were check
numerically over a significant range ofm andK. In fact, the
theory and numerics are in good quantitative agreemen
shown in Fig. 5.

Although theory and numerics agreed well for tw
coupled driven maps, with each coupled to a single driv
map, the results are not easily extendible to larger syste
Thus we have found, qualitatively, an explanation for t
numerically determined diffusion in Fig. 1, and also for t
results in@10#. It may be possible to include this effect, qua
titatively, in larger systems, using the type of phase-sp
argument employed in our previous work@3,10#. This is an
interesting avenue for future research.
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FIG. 7. The numerically determined coefficient of diffusion ve
susm, as in Fig. 6, forK50.8, 0.3, and 0.1.
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